【人工智慧如何席捲未來醫院?】3D 人臉辨識把關取藥身分、機器人支援不足人力

(本文書摘內容出自《從 AI 到 AI+:臺灣零售、醫療、基礎建設、金融、製造、農牧、運動產業第一線的數位轉型》,由 真文化 授權轉載,並同意 TechOrange 編寫導讀與修訂標題。)

【我們為什麼挑選這篇文章】隨著人工智慧應用愈加廣泛,手術室、藥櫃也變得更加智慧,協助提升手術效率、用藥安全,讓我們看看 《從 AI 到 AI+:臺灣零售、醫療、基礎建設、金融、製造、農牧、運動產業第一線的數位轉型》一書中《航向智慧醫療新藍海》章節的介紹。(責任編輯:呂珈寧)

未來醫院的規模不再以病床數來衡量,而是急、重、難症的治療能量,而手術室絕對是最重要的場域。根據世界衛生組織(WHO)規範的手術安全查核規範(WHO Surgical Safety Checklist),一個手術分成三大部分:Sign-in(簽入)、Time-out(暫停)、Sign-out(簽出)。每一個步驟都是確保病人手術安全、資訊正確與醫療團隊間的精準溝通。

臺灣 ICT 資源豐富,為智慧手術室奠定扎實基礎

WHO 只提供最基本的規畫方針,然而 ICT 資源豐富的臺灣,提供了更先進的智慧手術室規畫。當病人經過一連串術前檢查,並確認手術進行時間與主刀醫師之後,整個流程會由智慧病房系統轉移到智慧手術室排程系統。中央器械供應室有隨時待班的器械運送機器人,依手術室排程來運送病人手術名稱對應的器械包盤與相關耗材;機器人經由乾淨走道運送滅菌手術器械包盤,送達指定手術室後透過系統通知主責護理師;術後的髒汙器械運送機器人則按手術結束時間,由護理師啟動手術助理排程作業系統,搬運機器人前往載運髒汙器械、器具和物品。

一臺滿載的手術專用個案車(case cart)可能重達一、兩百公斤,藉由在汙物專用走道來回運送的機器人,不但可以降低器械運送人員的職業傷害,還能支援假日急刀人員不足、降低營運成本與管理複雜度,同時主動通知器械供應室收送案件。機器人的輔助讓手術室運作更為精準並提高效率。

圖片來源:真文化

落實手術中安全查核,透過手機 App 一手掌握

除了術前與術後的自動化效率,最重要的是真正落實術中的安全查核。每臺刀雖然都有標準作業流程,還是難以避免突發狀況。當手術門關上後,所有溝通聯繫都只能透過電話進行,這對於要調度上百名護理人員並同時運作數十間手術室的醫院來說,一直是很大的挑戰。透過手機上的手術查核 App,病患 Sign-in 時同時確認身分、麻醉準備、器械耗材清單;Time-out 時手術團隊的再次互相確認工作職掌、病患身分與手術部位;Sign-out 時確認檢體、器械與耗材數量。

這些步驟都在流動護理人員手上的 App 清楚呈現,每個步驟的確認與時間點即時同步到手術室護理站的電子白板,彷彿在戰情室裡同時操控數十個戰役的後勤資源調度。這種結合手術臨床流程、HIS 系統整合與手術紀錄、機器人自動化規畫、App 排程設計的完整方案,讓臨床醫療的高度專業融合在軟硬體的整合中,是 AIoT 精準醫療的經典應用案例。

智慧藥櫃提升用藥安全,大幅減少重大醫療疏失

WHO 最近把「Medication Without Harm」視為全球最重要議題推動,並在 2017 年德國波昂召開的會議中定下明確目標:5 年內降低 50% 的用藥傷害。臺灣的醫院一直落實「三讀五對 1」的給藥規範,以確保病患的用藥安全,但在繁忙的臨床作業中,醫師常因病情變化而調整用藥,若只以人力核對,很難完全落實用藥安全;而利用物聯網科技輔助用藥安全,為當前唯一的解方。

麻醉管制藥品監管是一家醫院最重要的藥品管理核心,如果出現任何差錯,常會演變成重大醫療疏失。此時,智慧藥櫃搖身一變成為最佳利器 。依照管制藥品領藥規定,必須同時兩人取藥,利用醫事人員卡和 3D 人臉辨識、再連動到院內值班系統,對於取藥身分做最嚴格的把關。根據不同醫院用藥習慣,彈性組合藥物放置空間;取藥時利用 AI 藥品影像辨識比對藥名與數量,確保正確的醫師調劑處方;最後再連動醫院藥劑部的藥品系統,時時盤點,確保全醫院的用藥情形安全無虞。

圖片來源:真文化

醫院另一個用藥安全的場域,是癌症化療藥劑的運送安全。醫院的化療藥物調劑室為受嚴格管制的特殊區域,因此通常設置在和一般病患施打藥劑地點一段距離以上的空間。利用 3D 圖資與內建 LiDA(認知架構)的運送機器人,可以安全且精確地在調劑室與護理站之間穿梭;調劑藥師通過 3D 人臉識別之後,將調劑好的化療藥劑鎖入內嵌 RFID 的感應門鎖;送達化療病房後,責任護理師經過 3D 臉部辨識認證後,取出藥物進行投藥。整個過程不但能避免因人力運送化療藥物可能發生的傾倒,以及化療藥劑領取時人員認證的管控風險,藥物取放時間點、實時位置與人員身分都即時連線院內系統,確保整個化療用藥流程的絕對安全與精準管理。

AI 、深度學習應用,有效協助降低用藥錯誤次數

臺灣在醫療健保普及的制度下,民眾用藥頻率極高,藥物事件造成的風險隨時都在發生。醫院藥物事件發生地點以藥局為主(36.2%),其次是一般病房(32.2%);醫院藥物事件發生階段以醫囑開立與輸入(54.9%)最多,其次為給藥階段(23%)、藥局調劑階段(20 %);從「醫囑開立與輸入階段」細項來看,以重複用藥(18.4%)最多,劑量錯誤(16.4 %)次之;而在藥局調劑錯誤階段細項中,則以藥名錯誤(44.9 %)最多,數量錯誤(20.8 %)次之;另外在給藥錯誤階段細項中,以劑量錯誤(22.5%)為最多,藥名錯誤(15.5%)次之。

為了降低用藥錯誤次數,利用 AI 人工智慧,串聯機率、藥品資料庫與深度學習,扮演藥品守門人,及時攔截不正確的藥物事件 。將 AI 應用於用藥辨識的方式相當多元,例如導入臺灣健保資料庫與大型醫院提供的電子病歷,實行無監督學習 2,讓 AI 學習醫師開立處方的行為,進一步判斷醫囑開立後是否有藥物名稱與該病症無任何關聯,進而發出系統警示;抑或將藥品辨識導入藥局調劑階段,利用 AI 藥物影像辨識技術快速識別從藥櫃中取出的藥物名稱、外型和數量,隨後從藥品資料庫帶出藥性、藥物副作用等相關資訊,使藥物調劑時更快辨認是否與處方籤相符,減少取藥錯誤。

無論是裸錠、鋁箔包裝、液裝或盒裝的 AI 藥物影像辨識,前提都需要教導 AI 進行幾何變換(geometric transformations): 包含放大、縮小、旋轉;顏色亮度、對比度、色調修正;圖像融合(image composite),拍攝影像與影像資料庫的加、減、組合、拼接;降噪(image denoising /noise reduction),影像上的雜訊來自硬體或環境光等因素,如果影像雜訊太多,將會影響邊緣檢測與影像分割的準確性,因此如何過濾影像上的雜訊並保留有效訊息就相當重要;邊緣檢測(edge detection)與影像分割(image segmentation)的配合,能將一張影像分割成多個不同區域並準確擷取局部特徵,讓 AI 進而認識藥物形狀、大小、顏色、文字、數量等特徵,最後根據前述擷取的影像資訊與藥品資料庫進行配對,即可精準告知使用者藥物名稱和相關資訊。

AI 藥物辨識技術大致可分成兩種:1:1 和 1:N,前者的應用多為醫療中心藥劑部調劑時,驗證管制藥或高貴藥的身分;後者則應用在預防取用多種藥品時的錯誤。以技術難度來看,1:N 的難度比 1:1 還要高,因為 1:N 的藥物辨識更容易受藥物類型、拍攝角度、拍攝方向、拍攝距離、環境光等因素影響辨識準確度。因此在現階段,藥物影像辨識技術與藥物辨識機構的配合度相當重要,產品設計者需針對不同類型藥物提供適合的辨識環境,以降低這些干擾因素。

(本文書摘內容出自《從 AI 到 AI+:臺灣零售、醫療、基礎建設、金融、製造、農牧、運動產業第一線的數位轉型》,由 真文化 授權轉載,並同意 TechOrange 編寫導讀與修訂標題。)

你可能會有興趣

100% 台灣團隊 AI 技術開發疫苗!宏碁聯手國防醫學院搶攻智慧醫療
【白色巨塔的科技觀點】COVID-19 後全球「遠距醫療」影響力超越 AI 醫療?500 位醫生這樣說
【不治之症將有解?】AI 篩選潛力藥物分子,四週內生成「超完美新藥」!

 


《TO》品牌活動「CONNECT」登場!

本周主打「Marketing Intelligence」專題,看企業如何激發數據無限錢力! 馬上報名 獲取最新深度報導。    

點關鍵字看更多相關文章: