連中兩次樂透也太幸運!怎麼會連續被雷擊?「不大可能法則」這樣解釋

(本文書摘內容出自《不大可能法則:誰說樂透不會中兩次?》,由 大塊文化 授權轉載,並同意 TechOrange 編寫導讀與修訂標題。)

【我們為什麼挑選這本書】生命中有好多巧合,恰巧到我們都不知道能怎麼解釋,是機率?還是命中注定?抑或是一股神奇的力量在主導一切?本文截自《不大可能法則:誰說樂透不會中兩次?》一書「神秘事件的神祕起源」章節,解釋何謂「不大可能法則」以及為什麼極不可能發生的事件必定會發生。(責任編輯:賴佩萱)

一九七二年夏天,美國男星安東尼‧霍普金斯(Anthony Hopkins)和片商簽約,預定在喬治‧菲佛(George Feifer)的小說《鐵幕情天恨》(The Girl form Petrovka)改編的電影中擔任主角。為了這部片子,他特地飛到倫敦想買這本小說,沒想到倫敦的大書店都沒有這本書。回程途中,他在萊斯特廣場(Leicester Square)站等地鐵,赫然發現他座椅旁邊擺著一本被人扔棄的書,書名就是《鐵幕情天恨》。

這已經夠巧了,但更神奇的還在後頭。後來霍普金斯有幸和作者見面,便對他說起這樁奇特的遭遇。菲佛聽得津津有味,跟他說他去年十一月將這本書借給一名朋友,書裡有他的親筆註記,將英式英文轉換成美式英文,例如將 labour 改成 labor 等等,以便發行美國版。但他的朋友將書留在倫敦市的貝斯瓦特區(Bayswater)忘了拿走。霍普金斯匆匆翻閱他手上那本小說的註記,發現這本書就是菲佛的朋友弄丟的那一本。

讀到這裡,你不得不問:這種事發生的機率有多高?百萬分之一?還是十億分之一?無論如何,這樣的事情都會挑戰可信度的極限,吸引我們用未知的力量或因素來解釋,這本書怎麼落到霍普金斯手裡,再回到菲佛身邊。

沒有沖洗的相片竟出現在新底片上

另外一個驚人的巧合出自心理學家榮格(Karl Jung)的《同時性》(Synchronicity)。他在書中寫道:「作家威廉‧馮休茲(Wilhelm von Scholz)……說過一個故事。一九一四年,一名母親在黑森林幫兒子拍了一張相片,接著將底片拿到史特拉斯堡沖洗。

但由於戰爭爆發,她沒辦法回去拿相片,便當作搞丟了。兩年後,這名母親在法蘭克福買了一卷底片,想要拍她剛出生的女兒。沒想到送洗時師傅發現底片雙重曝光,而且重疊的那張相片就是她之前幫兒子拍的那一張!那卷底片沒有沖洗,不知道為什麼和新的底片混在一起,重新流通到市面上。」

談起某件事,卻突然得知事件主角過世

我們幾乎都遇過類似的巧合,頂多驚人的程度差一點,例如正想到某人,對方就打電話來了之類的。怪的是,我在寫這本書的時候,就有這樣的經歷。一名同事要我推薦統計方法學某個主題(多變量t分布)的相關著作,於是我隔天查了資料,找到一本專講該主題的書,作者是薩繆爾‧寇慈(Samuel Kotz)和撒拉里斯‧納達拉吉(Saralees Nadarajah)。

我開始寫電郵給同事,告訴他那本書的細節,中途被一通來自加拿大的電話打斷。談話中,對方碰巧提到一件事,就是寇慈剛剛過世。

第一次打高爾夫球就一桿進洞

同樣的例子不勝枚舉。二○○五年九月二十八日英國《電訊報》(The Telegraph)報導,瓊安‧克雷斯威爾(Joan Cresswell)到坎布里亞(Cumbria)巴洛高爾夫俱樂部打球,於五十碼的第十三洞擊出一桿進洞。你可能覺得這還滿稀奇的,但沒有那麼不可思議,畢竟一桿進洞的確會發生。

但要是我告訴你下一個人是沒打過高爾夫的瑪格莉特‧威廉斯(Margaret Williams),她也一桿進洞呢?

是單純的偶然巧合,還是宇宙中的神奇力量在搞怪?

這種事實在太多了。有些現象感覺是那麼不可能和不應該發生,讓人不禁覺得宇宙是不是按著我們不瞭解的法則在運作,而我們熟悉的、日常生活所倚賴的自然律與因果法則是不是偶爾會失靈。這些現象必然會讓我們懷疑單憑巧合及人事物的偶然就能解釋一切,甚至覺得背後有一股看不見的力量在作祟。

這些現象通常只會令人訝異,成為茶餘飯後的話題。我頭一回去紐西蘭,某天在一間咖啡館坐下來休息,隔壁桌有兩個人,我發現其中一人用的便條紙是我在英國教書的那間大學販售的。

不過,離奇事件有時卻會大大改變我們的生命。有些是好事,例如美國紐澤西一名婦人先後中了兩次樂透;有些是壞事,例如桑默福德少校(Major Summerford)被雷擊了好幾次。

人是好奇的動物,自然會想知道離奇巧合背後的原因。是什麼讓兩名同大學的陌生人千里迢迢跑到地球的另一邊,在同一家咖啡館的隔壁桌喝咖啡?是什麼讓那名婦人兩次挑中了樂透的得獎號碼?是什麼讓桑默福德少校一次又一次被閃電擊中?是什麼讓安東尼‧霍普金斯和《鐵幕情天恨》穿越時間與空間,出現在同一個地鐵站裡的同一張座椅上?

不大可能法則:巧合無法避免,不可能發生的事必定會發生

當然,還有一個更重要的問題:我們如何利用這種巧合背後的原理,來為我們謀福利?

我剛才舉的都是小例子,僅限於個人層面,但現實中有太多更宏偉的例子,舉也舉不完。有些似乎想告訴我們,這些非常不可能的事件要是沒發生,不僅人類不會出現,連銀河本身也不會存在。有些則指出基因構造上的一個微小而隨機的改變,就可能創造出如人類一樣複雜的生物。還有些跟地球和太陽的距離、木星的存在,甚至物理基本常數值有關。

同樣的問題再度出現: 這些看似極不可能的事件真的能用機緣湊巧來解釋嗎?還是有其他的力量或因素在背後導引這些事件的走向?

這些問題的答案都回歸到一個定律,我稱之為不大可能法則。該原理主張 非常不可能的事件其實稀鬆平常 ,是一組更基本的法則齊力作用的結果。這些法則讓極度不可能的事件必然會出現,絕對會發生。不大可能法則蘊含的原則告訴我們, 按照宇宙的結構方式,巧合是無可避免的:這些非常不可能的事件必然會發生;機率微乎其微的現象一定會出現 。這些事件是那麼不可能,卻又不斷發生,只有不大可能法則可以解釋這個表面的矛盾。

科學定律究竟能否解釋人類生活現象?

讓我們從前科學時代的解釋說起。這些解釋通常源自不可考的過去,儘管至今仍有許多人深信不疑,但在培根革命之前就存在了。 培根革命(Baconian Revolution)認為,想要瞭解自然世界,就該蒐集資訊、進行實驗和勤作觀察,用這些發現作為判準來評估對於事件的各種解釋

在我們使用科學方法嚴格評判某個解釋是否有效之前,這些前科學說法就已經存在了。但解釋如果不曾或無法被檢證,就沒有真正的分量,只是說法或故事,跟聖誕老人或牙仙之類的童話沒有兩樣。這些前科學解釋具有安撫及鎮定的功能,能安慰不願或無法更深入的人,但無法達到真正的理解。

理解來自更深入的探究。藉由這些探究,思想家——研究者、哲學家和科學家——試圖找出描述自然界運行的「法則」。這些法則就像摘要,以簡單的形式概述我們對宇宙運行的觀察所得,是一種抽象化。例如牛頓第二運動定律指出物體的加速度和受力成正比,可以描述高樓落下物體的墜落軌跡。

自然律企圖直指現象的核心,剝除表面、去蕪存菁。我們讓預測符合觀察(亦即數據),藉此推導出定律。某定律說密閉容器中的定量氣體倘若溫度增加,壓力也會上升,事實真是如此嗎?數據也是這樣嗎?某定律說增加電壓會增強電流,我們真的會觀察到這個現象嗎?

藉由讓數據和解釋相符,我們對大自然有了空前的瞭解。從現代世界的出現到人類科學與技術的驚人成就,在在證明了這種方法的力量。

當然,有些人會覺得瞭解一個現象後,那個現象就不再神祕了。如果瞭解代表去除模糊、晦澀、歧異與困惑,那它確實剝奪了神祕。但瞭解彩虹色彩的成因絲毫不會減損彩虹的神奇,反而讓人對於現象背後的美產生更深的讚嘆,甚至敬畏。這樣的理解讓我們知道萬物如何構成我們所生活的這個世界。

機率夠小的事件絕不會發生──波萊爾定律

一八七一年出生的埃米爾‧波萊爾(Émile Borel)是法國重量級數學家,也是以數學角度研究機率(即測度論)的先驅,不少數學事物和概念都以他命名,例如波萊爾測度、波萊爾集、波萊爾-坎泰利引理(Borel-Cantelli lemma)及海涅-波萊爾定理(Heine-Borel theorem)等。

一九四三年,他寫了一本非數學的機率導論,書名為《機率與生命》(Les Probabilités et la vie)。書中除了說明機率的性質與應用,還提出了一個定律,他稱之為單一機率定律(single law of chance),現在通常直接稱為波萊爾定律。這個定律是這麼說的:「機率夠小的事件絕不會發生 」。

乍看之下,不大可能法則顯然和波萊爾定律衝突,畢竟你可能和我一樣,覺得機率很小的事件當然有可能,只是沒那麼常發生。機率不就是這麼回事?微小機率就更不用說了。然而,當我拿著《機率與生命》往下讀,就發現其中頗有蹊蹺。

為了說明他想表達的概念,波萊爾提到了一個經典理論,就是只要讓一群猴子隨意敲打打字機,就可能湊巧打出莎翁全集。用波萊爾的話來說就是:「這類事件雖然無法以理性證明不可能,但由於機率實在太低,任何正常人都會毫不遲疑宣稱這種事不可能發生。如果有人說他遇到了這類事件,我們一定會覺得他在騙人,而且也被別人騙了。」

因此,波萊爾的「機率極小」是就人類尺度說的,這才是他的意思。 某件事的機率對人類來說實在太小了,期待它會發生是不理性的,因此應該將它視為不可能的事 。的確,他在解釋完「單一機率定律」(你應該記得這個定律說機率夠小的事件絕不會發生)之後,立刻補充說:「至少我們在所有情況下都應該當它不可能發生 。」

他後來在書裡又舉了另一個例子:「對巴黎的通勤族來說,在街上發生事故的機率大約是一百萬分之一。如果某人為了避開這麼小的風險,決定足不出戶,整天關在家裡,甚至要求妻子和兒子也這麼做,我們都會認為他瘋了。」

理論上,不太可能發生的事件機率可視為零

其他思想家也有類似的見解。例如一七六○年代法國數學家讓‧達朗伯(Jean d’Alembert)便曾經提問,觀察某一個發生和不發生機率各半的事件,會不會觀察到它長時間連續發生?

一八四三年,《機率與生命》問世的一百年前,法國數學家安東-奧古斯丁‧庫爾諾(Antoine-Augustin Cournot)在《論機率與或然率理論》(Exposition de la Théorie des Chances et des Probabilités)裡,討論了完美圓錐倒立的實際和理論或然率。從此「實際必然性」就跟庫爾諾連在一起了,並且和「物理必然性」相對立。事實上,「機率極小的事件絕不會發生是實際上必然的 」,有時也稱為庫爾諾原理。

一九三○年代,哲學家卡爾‧波柏(Karl Popper)在《科學發現的邏輯》(The Logic of Scientific Discovery)裡也曾寫道:「極端不可能的事件應當忽略不計,這個法則……符合科學客觀性。」

波萊爾定律跟我們在幾何學課上學到的點線面有幾分類似。老師告訴我們這些幾何事物都是數學抽象,不存在於真實世界中,只是好用的簡化,方便我們在腦中思考和操作,以瞭解它們在真實世界中所代表的那些物體。同樣地, 雖然機率極小不等於零,但理想上還是可將它視為零。因為就人類實際環境而言,機率夠小的事件絕不會發生 。這就是波萊爾定律。

再次套用波萊爾的說法:「我們必須瞭解到,單一機率定律除了數學的必然性之外,還包括另一種必然性,不過這種必然性就像我們能接受某位古人、對蹠點的某座城市、路易十四或墨爾本的存在一樣,甚至和我們認為客觀世界必然存在一樣。」

在不同尺度下,事件發生的機率也不同

波萊爾還給出一個尺度,說明對他而言怎麼才算機率「夠小」。底下是我依據他的定義稍微修改過的版本。每一個版本,我都加上幾個例子,讓讀者對於數字大小有一些概念。

在人類尺度下,可忽略的機率值為小於一百萬分之一

撲克牌同花大順的機率約為六十五萬分之一,差不多是百萬分之一的兩倍。一年有三千多萬秒,因此以波萊爾的尺度而言,如果你和我各挑一年中的某一秒做某件事,我們會選在同一秒動手的機率就是可忽略的。

在地球尺度下,可忽略的機率值為 10 的十五次方分之一

地球的表面積約為 5.5×10 的十五次方平方英尺,因此如果你和我隨機在地球表面挑選一處站立(姑且不論其中許多地點都在海面上),我們選到同一塊地方的機率就是在地球尺度下可以忽略的。玩橋牌拿到十三張同花色牌的機率約為 4×10 的十次方分之一,遠大於地球尺度下可忽略事件的發生機率。

在宇宙尺度下,可忽略的機率值約為 10 的五十次方分之一

地球擁有 10 的五十次方粒原子,因此如果你和我隨機挑選地球上的任一個原子,我們選到同一粒原子的機率就是在宇宙尺度下可忽略的。相較之下,全宇宙「只有」10 的二十三次方顆星球。

在超宇宙尺度下,可忽略的機率值為 10 的十億次方之一

由於全宇宙的重子數據估計也只有 10 的八十次方,因此很難找到具體的例子說明這個機率有多小!

兩種解釋不會同時成立,卻也相互補充

波萊爾的「小到可忽略」指數告訴我們一個事件的機率小到什麼程度,就可以在現實中當作不可能發生。然而,不大可能法則卻指出,在波萊爾定義下,不可能發生的事件依然會發生。這些事件不僅不是不可能,而且會一再上演。這兩個原理不可能同時都對:這些事件不是太不可能,所以絕對看不到它們發生,就是很有可能,因此會不斷出現。

只要剝開不可能性的真諦,就能化解這個表面的矛盾。我們不妨將「不大可能法則」的各個面向視為洋蔥的外皮,每剝開一層相ㄨ,它的意義就會變得更清楚。原理的不同面向(巨數法則、夠近法則和選擇法則等)都以各自的方式,說明波萊爾定律和不大可能法則如何同時成立。

不大可能法則的某些面向影響深遠,有些則否。例如要判斷某種疾病集中出現是因為污染物或純屬巧合,就得仰賴巨數法則。然而,底下這個例子乍看之下非常不可能,機率低到沒有人預期它會發生,但它卻發生了。你可以試試能不能想出什麼解釋。

報導出自二○一一年十二月十九日的《美國新聞與世界報導》(U.S. News & World Report),主角是已故的北韓領導人金正日。報導中說:「一九九四年,金正日第一次打高爾夫,就徹底征服了七千七百碼的平壤高爾夫球場,打出了不可思議的低於標準桿三十八桿。他在北韓唯一的高爾夫球場打出十一次一桿進洞,最差的也有柏蒂,在場的十七名隨扈都可以作證。」

你可能會想到波萊爾對猴子打字理論的看法。就像我說的,不大可能法則有些面向非常直截了當,有些卻很深刻。這本書就是在討論後者。

(本文書摘內容出自《不大可能法則:誰說樂透不會中兩次?》,由 大塊文化 授權轉載,並同意 TechOrange 編寫導讀與修訂標題。)

你可能會有興趣


科技報橘 LinkedIn 上線!

最新科技產業動態、技術新突破、專業職能技巧提升 ....... 鎖定 TO  LinkedIn 專業品牌,提升職能與產業 Know-how,躋身產業菁英之列 https://www.linkedin.com/showcase/techorange

點關鍵字看更多相關文章: